Let ααα and βββ be the roots of x23x+c=0x23x+c=0x23x+c=0, where ccc is a real number. If ααα is a root of x2+3xc=0x2+3xc=0x2+3xc=0, find the value of αβαβαβ.


Answer:

000

Step by Step Explanation:
  1. α & βα & βα & β are the roots of the equation, therefore,
    αβ=c1=c  .....(1)αβ=c1=c  .....(1)αβ=c1=c  .....(1)
  2. As ααα is the root of the equation x23x+c=0x23x+c=0x23x+c=0,
    α23α+c=0  .....(2)α23α+c=0  .....(2)α23α+c=0  .....(2)
    Also, ααα is the root of the equation x2+3xc=0x2+3xc=0x2+3xc=0,
    [Math Processing Error]
  3. On subtracting eq(2)eq(2) by eq(3)eq(3), we get,
    [Math Processing Error]
  4. By eq(1)eq(1), we have,
    [Math Processing Error]

You can reuse this answer
Creative Commons License
whatsapp logo
Chat with us