Let ααα and βββ be the roots of x2−3x+c=0x2−3x+c=0x2−3x+c=0, where ccc is a real number. If −α−α−α is a root of x2+3x−c=0x2+3x−c=0x2+3x−c=0, find the value of αβαβαβ.
Answer:
000
- α & βα & βα & β are the roots of the equation, therefore,
αβ=c1=c .....(1)αβ=c1=c .....(1)αβ=c1=c .....(1) - As ααα is the root of the equation x2−3x+c=0x2−3x+c=0x2−3x+c=0,
α2−3α+c=0 .....(2)α2−3α+c=0 .....(2)α2−3α+c=0 .....(2)
Also, −α−α−α is the root of the equation x2+3x−c=0x2+3x−c=0x2+3x−c=0,
[Math Processing Error] - On subtracting eq(2)eq(2) by eq(3)eq(3), we get,
[Math Processing Error] - By eq(1)eq(1), we have,
[Math Processing Error]