If x>0 and (x+1x)2=36, find the value of x3+1x3.
Answer:
198
- Given, (x+1x)2=36
⟹x+1x=±6 - Also, given x>0
⟹x+1x=6
Taking the cube on both sides.
⟹(x+1x)3=63
⟹x3+1x3+3x+3x=216
⟹x3+1x3+3(x+1x)=216
⟹x3+1x3+3×6=216
⟹x3+1x3=198