A circle is inscribed in a △ABC△ABC△ABC, touching BC,CA,BC,CA,BC,CA, and ABABAB at points P,Q,P,Q,P,Q, and RRR respectively. If AB=14 cm,AQ=11 cmAB=14 cm,AQ=11 cmAB=14 cm,AQ=11 cm and CQ=9 cmCQ=9 cmCQ=9 cm then find the length of BCBCBC.
Answer:
12 cm12 cm12 cm
- We know that the lengths of tangents drawn from an external point to a circle are equal.
Thus, [Math Processing Error] - We see that BR=AB−AR=14 cm−11 cm=3 cm.BR=AB−AR=14 cm−11 cm=3 cm.
Thus, BP=BR=3 cm.BP=BR=3 cm. - Therefore, BC=BP+CP=3 cm+9 cm=12 cm.BC=BP+CP=3 cm+9 cm=12 cm.